3.2.57 \(\int \frac {\coth ^4(c+d x)}{(a+b \text {sech}^2(c+d x))^2} \, dx\) [157]

3.2.57.1 Optimal result
3.2.57.2 Mathematica [B] (warning: unable to verify)
3.2.57.3 Rubi [A] (verified)
3.2.57.4 Maple [B] (verified)
3.2.57.5 Fricas [B] (verification not implemented)
3.2.57.6 Sympy [F]
3.2.57.7 Maxima [B] (verification not implemented)
3.2.57.8 Giac [F]
3.2.57.9 Mupad [F(-1)]

3.2.57.1 Optimal result

Integrand size = 23, antiderivative size = 161 \[ \int \frac {\coth ^4(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=\frac {x}{a^2}-\frac {b^{5/2} (7 a+2 b) \text {arctanh}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a+b}}\right )}{2 a^2 (a+b)^{7/2} d}-\frac {\left (2 a^2+6 a b-b^2\right ) \coth (c+d x)}{2 a (a+b)^3 d}-\frac {(2 a-3 b) \coth ^3(c+d x)}{6 a (a+b)^2 d}-\frac {b \coth ^3(c+d x)}{2 a (a+b) d \left (a+b-b \tanh ^2(c+d x)\right )} \]

output
x/a^2-1/2*b^(5/2)*(7*a+2*b)*arctanh(b^(1/2)*tanh(d*x+c)/(a+b)^(1/2))/a^2/( 
a+b)^(7/2)/d-1/2*(2*a^2+6*a*b-b^2)*coth(d*x+c)/a/(a+b)^3/d-1/6*(2*a-3*b)*c 
oth(d*x+c)^3/a/(a+b)^2/d-1/2*b*coth(d*x+c)^3/a/(a+b)/d/(a+b-b*tanh(d*x+c)^ 
2)
 
3.2.57.2 Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(350\) vs. \(2(161)=322\).

Time = 6.35 (sec) , antiderivative size = 350, normalized size of antiderivative = 2.17 \[ \int \frac {\coth ^4(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=\frac {(a+2 b+a \cosh (2 (c+d x))) \text {sech}^4(c+d x) \left (\frac {6 x (a+2 b+a \cosh (2 (c+d x)))}{a^2}-\frac {2 (a+2 b+a \cosh (2 (c+d x))) \coth (c) \text {csch}^2(c+d x)}{(a+b)^2 d}-\frac {3 b^3 (7 a+2 b) \text {arctanh}\left (\frac {\text {sech}(d x) (\cosh (2 c)-\sinh (2 c)) ((a+2 b) \sinh (d x)-a \sinh (2 c+d x))}{2 \sqrt {a+b} \sqrt {b (\cosh (c)-\sinh (c))^4}}\right ) (a+2 b+a \cosh (2 (c+d x))) (\cosh (2 c)-\sinh (2 c))}{a^2 (a+b)^{7/2} d \sqrt {b (\cosh (c)-\sinh (c))^4}}+\frac {4 (2 a+5 b) (a+2 b+a \cosh (2 (c+d x))) \text {csch}(c) \text {csch}(c+d x) \sinh (d x)}{(a+b)^3 d}+\frac {2 (a+2 b+a \cosh (2 (c+d x))) \text {csch}(c) \text {csch}^3(c+d x) \sinh (d x)}{(a+b)^2 d}+\frac {3 b^3 \text {sech}(2 c) ((a+2 b) \sinh (2 c)-a \sinh (2 d x))}{a^2 (a+b)^3 d}\right )}{24 \left (a+b \text {sech}^2(c+d x)\right )^2} \]

input
Integrate[Coth[c + d*x]^4/(a + b*Sech[c + d*x]^2)^2,x]
 
output
((a + 2*b + a*Cosh[2*(c + d*x)])*Sech[c + d*x]^4*((6*x*(a + 2*b + a*Cosh[2 
*(c + d*x)]))/a^2 - (2*(a + 2*b + a*Cosh[2*(c + d*x)])*Coth[c]*Csch[c + d* 
x]^2)/((a + b)^2*d) - (3*b^3*(7*a + 2*b)*ArcTanh[(Sech[d*x]*(Cosh[2*c] - S 
inh[2*c])*((a + 2*b)*Sinh[d*x] - a*Sinh[2*c + d*x]))/(2*Sqrt[a + b]*Sqrt[b 
*(Cosh[c] - Sinh[c])^4])]*(a + 2*b + a*Cosh[2*(c + d*x)])*(Cosh[2*c] - Sin 
h[2*c]))/(a^2*(a + b)^(7/2)*d*Sqrt[b*(Cosh[c] - Sinh[c])^4]) + (4*(2*a + 5 
*b)*(a + 2*b + a*Cosh[2*(c + d*x)])*Csch[c]*Csch[c + d*x]*Sinh[d*x])/((a + 
 b)^3*d) + (2*(a + 2*b + a*Cosh[2*(c + d*x)])*Csch[c]*Csch[c + d*x]^3*Sinh 
[d*x])/((a + b)^2*d) + (3*b^3*Sech[2*c]*((a + 2*b)*Sinh[2*c] - a*Sinh[2*d* 
x]))/(a^2*(a + b)^3*d)))/(24*(a + b*Sech[c + d*x]^2)^2)
 
3.2.57.3 Rubi [A] (verified)

Time = 0.54 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.13, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.522, Rules used = {3042, 4629, 2075, 374, 25, 445, 27, 445, 25, 397, 219, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\coth ^4(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\tan (i c+i d x)^4 \left (a+b \sec (i c+i d x)^2\right )^2}dx\)

\(\Big \downarrow \) 4629

\(\displaystyle \frac {\int \frac {\coth ^4(c+d x)}{\left (1-\tanh ^2(c+d x)\right ) \left (a+b \left (1-\tanh ^2(c+d x)\right )\right )^2}d\tanh (c+d x)}{d}\)

\(\Big \downarrow \) 2075

\(\displaystyle \frac {\int \frac {\coth ^4(c+d x)}{\left (1-\tanh ^2(c+d x)\right ) \left (-b \tanh ^2(c+d x)+a+b\right )^2}d\tanh (c+d x)}{d}\)

\(\Big \downarrow \) 374

\(\displaystyle \frac {-\frac {\int -\frac {\coth ^4(c+d x) \left (5 b \tanh ^2(c+d x)+2 a-3 b\right )}{\left (1-\tanh ^2(c+d x)\right ) \left (-b \tanh ^2(c+d x)+a+b\right )}d\tanh (c+d x)}{2 a (a+b)}-\frac {b \coth ^3(c+d x)}{2 a (a+b) \left (a-b \tanh ^2(c+d x)+b\right )}}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\int \frac {\coth ^4(c+d x) \left (5 b \tanh ^2(c+d x)+2 a-3 b\right )}{\left (1-\tanh ^2(c+d x)\right ) \left (-b \tanh ^2(c+d x)+a+b\right )}d\tanh (c+d x)}{2 a (a+b)}-\frac {b \coth ^3(c+d x)}{2 a (a+b) \left (a-b \tanh ^2(c+d x)+b\right )}}{d}\)

\(\Big \downarrow \) 445

\(\displaystyle \frac {\frac {-\frac {\int -\frac {3 \coth ^2(c+d x) \left (2 a^2+6 b a-b^2-(2 a-3 b) b \tanh ^2(c+d x)\right )}{\left (1-\tanh ^2(c+d x)\right ) \left (-b \tanh ^2(c+d x)+a+b\right )}d\tanh (c+d x)}{3 (a+b)}-\frac {(2 a-3 b) \coth ^3(c+d x)}{3 (a+b)}}{2 a (a+b)}-\frac {b \coth ^3(c+d x)}{2 a (a+b) \left (a-b \tanh ^2(c+d x)+b\right )}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {\int \frac {\coth ^2(c+d x) \left (2 a^2+6 b a-b^2-(2 a-3 b) b \tanh ^2(c+d x)\right )}{\left (1-\tanh ^2(c+d x)\right ) \left (-b \tanh ^2(c+d x)+a+b\right )}d\tanh (c+d x)}{a+b}-\frac {(2 a-3 b) \coth ^3(c+d x)}{3 (a+b)}}{2 a (a+b)}-\frac {b \coth ^3(c+d x)}{2 a (a+b) \left (a-b \tanh ^2(c+d x)+b\right )}}{d}\)

\(\Big \downarrow \) 445

\(\displaystyle \frac {\frac {\frac {-\frac {\int -\frac {2 a^3+8 b a^2+12 b^2 a+b^3-b \left (2 a^2+6 b a-b^2\right ) \tanh ^2(c+d x)}{\left (1-\tanh ^2(c+d x)\right ) \left (-b \tanh ^2(c+d x)+a+b\right )}d\tanh (c+d x)}{a+b}-\frac {\left (2 a^2+6 a b-b^2\right ) \coth (c+d x)}{a+b}}{a+b}-\frac {(2 a-3 b) \coth ^3(c+d x)}{3 (a+b)}}{2 a (a+b)}-\frac {b \coth ^3(c+d x)}{2 a (a+b) \left (a-b \tanh ^2(c+d x)+b\right )}}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\frac {\frac {\int \frac {2 a^3+8 b a^2+12 b^2 a+b^3-b \left (2 a^2+6 b a-b^2\right ) \tanh ^2(c+d x)}{\left (1-\tanh ^2(c+d x)\right ) \left (-b \tanh ^2(c+d x)+a+b\right )}d\tanh (c+d x)}{a+b}-\frac {\left (2 a^2+6 a b-b^2\right ) \coth (c+d x)}{a+b}}{a+b}-\frac {(2 a-3 b) \coth ^3(c+d x)}{3 (a+b)}}{2 a (a+b)}-\frac {b \coth ^3(c+d x)}{2 a (a+b) \left (a-b \tanh ^2(c+d x)+b\right )}}{d}\)

\(\Big \downarrow \) 397

\(\displaystyle \frac {\frac {\frac {\frac {\frac {2 (a+b)^3 \int \frac {1}{1-\tanh ^2(c+d x)}d\tanh (c+d x)}{a}-\frac {b^3 (7 a+2 b) \int \frac {1}{-b \tanh ^2(c+d x)+a+b}d\tanh (c+d x)}{a}}{a+b}-\frac {\left (2 a^2+6 a b-b^2\right ) \coth (c+d x)}{a+b}}{a+b}-\frac {(2 a-3 b) \coth ^3(c+d x)}{3 (a+b)}}{2 a (a+b)}-\frac {b \coth ^3(c+d x)}{2 a (a+b) \left (a-b \tanh ^2(c+d x)+b\right )}}{d}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {\frac {\frac {\frac {2 (a+b)^3 \text {arctanh}(\tanh (c+d x))}{a}-\frac {b^3 (7 a+2 b) \int \frac {1}{-b \tanh ^2(c+d x)+a+b}d\tanh (c+d x)}{a}}{a+b}-\frac {\left (2 a^2+6 a b-b^2\right ) \coth (c+d x)}{a+b}}{a+b}-\frac {(2 a-3 b) \coth ^3(c+d x)}{3 (a+b)}}{2 a (a+b)}-\frac {b \coth ^3(c+d x)}{2 a (a+b) \left (a-b \tanh ^2(c+d x)+b\right )}}{d}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\frac {\frac {\frac {\frac {2 (a+b)^3 \text {arctanh}(\tanh (c+d x))}{a}-\frac {b^{5/2} (7 a+2 b) \text {arctanh}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a+b}}\right )}{a \sqrt {a+b}}}{a+b}-\frac {\left (2 a^2+6 a b-b^2\right ) \coth (c+d x)}{a+b}}{a+b}-\frac {(2 a-3 b) \coth ^3(c+d x)}{3 (a+b)}}{2 a (a+b)}-\frac {b \coth ^3(c+d x)}{2 a (a+b) \left (a-b \tanh ^2(c+d x)+b\right )}}{d}\)

input
Int[Coth[c + d*x]^4/(a + b*Sech[c + d*x]^2)^2,x]
 
output
((-1/3*((2*a - 3*b)*Coth[c + d*x]^3)/(a + b) + (((2*(a + b)^3*ArcTanh[Tanh 
[c + d*x]])/a - (b^(5/2)*(7*a + 2*b)*ArcTanh[(Sqrt[b]*Tanh[c + d*x])/Sqrt[ 
a + b]])/(a*Sqrt[a + b]))/(a + b) - ((2*a^2 + 6*a*b - b^2)*Coth[c + d*x])/ 
(a + b))/(a + b))/(2*a*(a + b)) - (b*Coth[c + d*x]^3)/(2*a*(a + b)*(a + b 
- b*Tanh[c + d*x]^2)))/d
 

3.2.57.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 374
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[(-b)*(e*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q 
 + 1)/(a*e*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(e*x)^m*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[b*c*(m + 1) + 2*(b*c - 
a*d)*(p + 1) + d*b*(m + 2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b, 
c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && IntBinomialQ[a, b, 
 c, d, e, m, 2, p, q, x]
 

rule 397
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)), x_ 
Symbol] :> Simp[(b*e - a*f)/(b*c - a*d)   Int[1/(a + b*x^2), x], x] - Simp[ 
(d*e - c*f)/(b*c - a*d)   Int[1/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d, e 
, f}, x]
 

rule 445
Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_ 
.)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^2)^(p 
+ 1)*((c + d*x^2)^(q + 1)/(a*c*g*(m + 1))), x] + Simp[1/(a*c*g^2*(m + 1)) 
 Int[(g*x)^(m + 2)*(a + b*x^2)^p*(c + d*x^2)^q*Simp[a*f*c*(m + 1) - e*(b*c 
+ a*d)*(m + 2 + 1) - e*2*(b*c*p + a*d*q) - b*e*d*(m + 2*(p + q + 2) + 1)*x^ 
2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && LtQ[m, -1]
 

rule 2075
Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*Expa 
ndToSum[u, x]^p*ExpandToSum[v, x]^q, x] /; FreeQ[{e, m, p, q}, x] && Binomi 
alQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0] &&  ! 
BinomialMatchQ[{u, v}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4629
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f 
_.)*(x_)])^(m_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Sim 
p[ff/f   Subst[Int[(d*ff*x)^m*((a + b*(1 + ff^2*x^2)^(n/2))^p/(1 + ff^2*x^2 
)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && Inte 
gerQ[n/2] && (IntegerQ[m/2] || EqQ[n, 2])
 
3.2.57.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(361\) vs. \(2(145)=290\).

Time = 34.98 (sec) , antiderivative size = 362, normalized size of antiderivative = 2.25

method result size
derivativedivides \(\frac {-\frac {\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} a}{3}+\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} b}{3}+5 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) a +13 b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 \left (a^{2}+2 a b +b^{2}\right ) \left (a +b \right )}+\frac {\ln \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a^{2}}-\frac {\ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{a^{2}}-\frac {1}{24 \left (a +b \right )^{2} \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}-\frac {5 a +13 b}{8 \left (a +b \right )^{3} \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}+\frac {2 b^{3} \left (\frac {-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} a}{2}-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) a}{2}}{\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a +\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} b +2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b}+\frac {\left (7 a +2 b \right ) \left (-\frac {\ln \left (\sqrt {a +b}\, \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}+\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}+\frac {\ln \left (\sqrt {a +b}\, \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}+\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}\right )}{2}\right )}{a^{2} \left (a +b \right )^{3}}}{d}\) \(362\)
default \(\frac {-\frac {\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} a}{3}+\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} b}{3}+5 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) a +13 b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 \left (a^{2}+2 a b +b^{2}\right ) \left (a +b \right )}+\frac {\ln \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a^{2}}-\frac {\ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{a^{2}}-\frac {1}{24 \left (a +b \right )^{2} \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}-\frac {5 a +13 b}{8 \left (a +b \right )^{3} \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}+\frac {2 b^{3} \left (\frac {-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} a}{2}-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) a}{2}}{\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a +\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} b +2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b}+\frac {\left (7 a +2 b \right ) \left (-\frac {\ln \left (\sqrt {a +b}\, \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}+\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}+\frac {\ln \left (\sqrt {a +b}\, \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}+\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}\right )}{2}\right )}{a^{2} \left (a +b \right )^{3}}}{d}\) \(362\)
risch \(\frac {x}{a^{2}}-\frac {12 a^{4} {\mathrm e}^{8 d x +8 c}+24 a^{3} b \,{\mathrm e}^{8 d x +8 c}-3 a \,b^{3} {\mathrm e}^{8 d x +8 c}-6 b^{4} {\mathrm e}^{8 d x +8 c}+12 a^{4} {\mathrm e}^{6 d x +6 c}+60 a^{3} b \,{\mathrm e}^{6 d x +6 c}+96 a^{2} b^{2} {\mathrm e}^{6 d x +6 c}+6 a \,b^{3} {\mathrm e}^{6 d x +6 c}+18 b^{4} {\mathrm e}^{6 d x +6 c}-4 a^{4} {\mathrm e}^{4 d x +4 c}-76 a^{3} b \,{\mathrm e}^{4 d x +4 c}-144 a^{2} b^{2} {\mathrm e}^{4 d x +4 c}-18 b^{4} {\mathrm e}^{4 d x +4 c}+4 a^{4} {\mathrm e}^{2 d x +2 c}+36 a^{3} b \,{\mathrm e}^{2 d x +2 c}+80 a^{2} b^{2} {\mathrm e}^{2 d x +2 c}-6 a \,b^{3} {\mathrm e}^{2 d x +2 c}+6 b^{4} {\mathrm e}^{2 d x +2 c}+8 a^{4}+20 a^{3} b +3 a \,b^{3}}{3 d \left (a +b \right )^{3} \left ({\mathrm e}^{2 d x +2 c}-1\right )^{3} a^{2} \left (a \,{\mathrm e}^{4 d x +4 c}+2 \,{\mathrm e}^{2 d x +2 c} a +4 b \,{\mathrm e}^{2 d x +2 c}+a \right )}+\frac {7 \sqrt {\left (a +b \right ) b}\, b^{2} \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 \sqrt {\left (a +b \right ) b}+a +2 b}{a}\right )}{4 \left (a +b \right )^{4} d a}+\frac {\sqrt {\left (a +b \right ) b}\, b^{3} \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 \sqrt {\left (a +b \right ) b}+a +2 b}{a}\right )}{2 \left (a +b \right )^{4} d \,a^{2}}-\frac {7 \sqrt {\left (a +b \right ) b}\, b^{2} \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {2 \sqrt {\left (a +b \right ) b}-a -2 b}{a}\right )}{4 \left (a +b \right )^{4} d a}-\frac {\sqrt {\left (a +b \right ) b}\, b^{3} \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {2 \sqrt {\left (a +b \right ) b}-a -2 b}{a}\right )}{2 \left (a +b \right )^{4} d \,a^{2}}\) \(572\)

input
int(coth(d*x+c)^4/(a+b*sech(d*x+c)^2)^2,x,method=_RETURNVERBOSE)
 
output
1/d*(-1/8/(a^2+2*a*b+b^2)/(a+b)*(1/3*tanh(1/2*d*x+1/2*c)^3*a+1/3*tanh(1/2* 
d*x+1/2*c)^3*b+5*tanh(1/2*d*x+1/2*c)*a+13*b*tanh(1/2*d*x+1/2*c))+1/a^2*ln( 
1+tanh(1/2*d*x+1/2*c))-1/a^2*ln(tanh(1/2*d*x+1/2*c)-1)-1/24/(a+b)^2/tanh(1 
/2*d*x+1/2*c)^3-1/8*(5*a+13*b)/(a+b)^3/tanh(1/2*d*x+1/2*c)+2*b^3/a^2/(a+b) 
^3*((-1/2*tanh(1/2*d*x+1/2*c)^3*a-1/2*tanh(1/2*d*x+1/2*c)*a)/(tanh(1/2*d*x 
+1/2*c)^4*a+tanh(1/2*d*x+1/2*c)^4*b+2*tanh(1/2*d*x+1/2*c)^2*a-2*tanh(1/2*d 
*x+1/2*c)^2*b+a+b)+1/2*(7*a+2*b)*(-1/4/b^(1/2)/(a+b)^(1/2)*ln((a+b)^(1/2)* 
tanh(1/2*d*x+1/2*c)^2+2*tanh(1/2*d*x+1/2*c)*b^(1/2)+(a+b)^(1/2))+1/4/b^(1/ 
2)/(a+b)^(1/2)*ln((a+b)^(1/2)*tanh(1/2*d*x+1/2*c)^2-2*tanh(1/2*d*x+1/2*c)* 
b^(1/2)+(a+b)^(1/2)))))
 
3.2.57.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 4786 vs. \(2 (148) = 296\).

Time = 0.40 (sec) , antiderivative size = 9849, normalized size of antiderivative = 61.17 \[ \int \frac {\coth ^4(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=\text {Too large to display} \]

input
integrate(coth(d*x+c)^4/(a+b*sech(d*x+c)^2)^2,x, algorithm="fricas")
 
output
Too large to include
 
3.2.57.6 Sympy [F]

\[ \int \frac {\coth ^4(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=\int \frac {\coth ^{4}{\left (c + d x \right )}}{\left (a + b \operatorname {sech}^{2}{\left (c + d x \right )}\right )^{2}}\, dx \]

input
integrate(coth(d*x+c)**4/(a+b*sech(d*x+c)**2)**2,x)
 
output
Integral(coth(c + d*x)**4/(a + b*sech(c + d*x)**2)**2, x)
 
3.2.57.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2961 vs. \(2 (148) = 296\).

Time = 0.57 (sec) , antiderivative size = 2961, normalized size of antiderivative = 18.39 \[ \int \frac {\coth ^4(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=\text {Too large to display} \]

input
integrate(coth(d*x+c)^4/(a+b*sech(d*x+c)^2)^2,x, algorithm="maxima")
 
output
1/4*(a^2*b + 3*a*b^2 + b^3)*log(a*e^(4*d*x + 4*c) + 2*(a + 2*b)*e^(2*d*x + 
 2*c) + a)/((a^5 + 3*a^4*b + 3*a^3*b^2 + a^2*b^3)*d) - 1/2*b*log(a*e^(4*d* 
x + 4*c) + 2*(a + 2*b)*e^(2*d*x + 2*c) + a)/((a^3 + 3*a^2*b + 3*a*b^2 + b^ 
3)*d) - 1/4*(a^2*b + 3*a*b^2 + b^3)*log(2*(a + 2*b)*e^(-2*d*x - 2*c) + a*e 
^(-4*d*x - 4*c) + a)/((a^5 + 3*a^4*b + 3*a^3*b^2 + a^2*b^3)*d) + 1/2*b*log 
(2*(a + 2*b)*e^(-2*d*x - 2*c) + a*e^(-4*d*x - 4*c) + a)/((a^3 + 3*a^2*b + 
3*a*b^2 + b^3)*d) + 1/2*(a + 2*b)*log(e^(2*d*x + 2*c) - 1)/((a^3 + 3*a^2*b 
 + 3*a*b^2 + b^3)*d) + b*log(e^(2*d*x + 2*c) - 1)/((a^3 + 3*a^2*b + 3*a*b^ 
2 + b^3)*d) - 1/2*(a + 2*b)*log(e^(-2*d*x - 2*c) - 1)/((a^3 + 3*a^2*b + 3* 
a*b^2 + b^3)*d) - b*log(e^(-2*d*x - 2*c) - 1)/((a^3 + 3*a^2*b + 3*a*b^2 + 
b^3)*d) - 1/64*(3*a^3*b + 38*a^2*b^2 + 56*a*b^3 + 16*b^4)*log((a*e^(2*d*x 
+ 2*c) + a + 2*b - 2*sqrt((a + b)*b))/(a*e^(2*d*x + 2*c) + a + 2*b + 2*sqr 
t((a + b)*b)))/((a^5 + 3*a^4*b + 3*a^3*b^2 + a^2*b^3)*sqrt((a + b)*b)*d) + 
 1/16*(3*a*b + 8*b^2)*log((a*e^(2*d*x + 2*c) + a + 2*b - 2*sqrt((a + b)*b) 
)/(a*e^(2*d*x + 2*c) + a + 2*b + 2*sqrt((a + b)*b)))/((a^3 + 3*a^2*b + 3*a 
*b^2 + b^3)*sqrt((a + b)*b)*d) + 1/64*(3*a^3*b + 38*a^2*b^2 + 56*a*b^3 + 1 
6*b^4)*log((a*e^(-2*d*x - 2*c) + a + 2*b - 2*sqrt((a + b)*b))/(a*e^(-2*d*x 
 - 2*c) + a + 2*b + 2*sqrt((a + b)*b)))/((a^5 + 3*a^4*b + 3*a^3*b^2 + a^2* 
b^3)*sqrt((a + b)*b)*d) - 1/16*(3*a*b + 8*b^2)*log((a*e^(-2*d*x - 2*c) + a 
 + 2*b - 2*sqrt((a + b)*b))/(a*e^(-2*d*x - 2*c) + a + 2*b + 2*sqrt((a +...
 
3.2.57.8 Giac [F]

\[ \int \frac {\coth ^4(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=\int { \frac {\coth \left (d x + c\right )^{4}}{{\left (b \operatorname {sech}\left (d x + c\right )^{2} + a\right )}^{2}} \,d x } \]

input
integrate(coth(d*x+c)^4/(a+b*sech(d*x+c)^2)^2,x, algorithm="giac")
 
output
sage0*x
 
3.2.57.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\coth ^4(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^2} \, dx=\int \frac {{\mathrm {cosh}\left (c+d\,x\right )}^4\,{\mathrm {coth}\left (c+d\,x\right )}^4}{{\left (a\,{\mathrm {cosh}\left (c+d\,x\right )}^2+b\right )}^2} \,d x \]

input
int(coth(c + d*x)^4/(a + b/cosh(c + d*x)^2)^2,x)
 
output
int((cosh(c + d*x)^4*coth(c + d*x)^4)/(b + a*cosh(c + d*x)^2)^2, x)